209 research outputs found

    P-Loop Residues Critical for Selectivity in K+ Channels Fail to Confer Selectivity to Rabbit HCN4 Channels

    Get PDF
    HCN channels are thought to be structurally similar to Kv channels, but show much lower selectivity for K+. The ∼3.3 Å selectivity filter of K+ channels is formed by the pore-lining sequence XT(V/I)GYG, with X usually T, and is held stable by key residues in the P-loop. Differences in the P-loop sequence of HCN channels (eg. the pore-lining sequence L478C479IGYG) suggest these residues could account for differences in selectivity between these channel families. Despite being expressed, L478T/C479T HCN4 channels did not produce current. Since threonine in the second position is highly conserved in K+ channels, we also studied C479T channels. Based on permeability ratios (PX/PK), C479T HCN4 channels (K+(1)>Rb+(0.85)>Cs+(0.59)>Li+(0.50)≥Na+(0.49)) were less selective than WT rabbit HCN4 (K+(1)>Rb+(0.48)>Cs+(0.31)≥Na+(0.29)>Li+(0.03)), indicating that the TIGYG sequence is insufficient to confer K+ selectivity to HCN channels. C479T HCN4 channels had an increased permeability to large organic cations than WT HCN4 channels, as well as increased unitary K+ conductance, and altered channel gating. Collectively, these results suggest that HCN4 channels have larger pores than K+ channels and replacement of the cysteine at position 479 with threonine further increases pore size. Furthermore, selected mutations in other regions linked previously to pore stability in K+ channels (ie. S475D, S475E and F471W/K472W) were also unable to confer K+ selectivity to C479T HCN4 channels. Our findings establish the presence of the TIGYG pore-lining sequence does not confer K+ selectivity to rabbit HCN4 channels, and suggests that differences in selectivity of HCN4 versus K+ channels originate from differences outside the P-loop region

    Are Off-Field Activities an Underestimated Risk for Hamstring Injuries in Dutch Male Amateur Soccer Players? An Exploratory Analysis of a Prospective Cohort Study

    Get PDF
    Purpose The purpose of this study was to explore what extent male amateur soccer players participate in off-field activities and whether these off-field activities are associated with the development of hamstring injuries. Methods Amateur soccer players (n = 399) from first-class selection teams (n = 32) filled out a baseline screening questionnaire concerning off-field activities (i.e., work and study type and hours, traveling time, sleep, energy costs, and time spent on other activities) and their history of hamstring injury as a part of a cluster-randomized controlled trial. Throughout one competition, the players reported weekly their hamstring injuries, which were verified by medical/technical staff. Multivariable Firth corrected logistic regression models were used to explore associations between off-field activities and hamstring injuries. Results Sixty-five hamstring injuries were recorded. Previous injury was significantly associated with hamstring injuries (OR ranging from 1.94 [95% CI 1.45–2.61] to 2.02 [95% CI 1.49–2.73]), but off-field activities were not. Conclusion Although amateur soccer players spent a relatively large amount of time on off-field activities, we did not find off-field activities measured at baseline to be associated with hamstring injuries in the subsequent competitive soccer season. In contrast, previous hamstring injury was found to be strongly associated with (recurrent) hamstring injuries

    The Effects of Lower-Extremity Plyometric Training on Soccer-Specific Outcomes in Adult Male Soccer Players:A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Plyometric training is a specific form of strength training that is used to improve the physical performance of athletes. An overview of the effects of plyometric training on soccer-specific outcomes in adult male soccer players is not available yet. PURPOSE: To systematically review and meta-analyze the effects of plyometric training on soccer-specific outcome measures in adult male soccer players and to identify which programs are most effective. METHODS: PubMed, Embase/Medline, Cochrane, PEDro, and Scopus were searched. Extensive quality and risk of bias assessments were performed using the Cochrane ROBINS 2.0 for randomized trials. A random effects meta-analysis was performed using Cochrane Review Manager 5.3. RESULTS: Seventeen randomized trials were included in the meta-analysis. The impact of plyometric training on strength, jump height, sprint speed, agility, and endurance was assessed. Only jump height, 20-m sprint speed, and endurance were significantly improved by plyometric training in soccer players. Results of the risk of bias assessment of the included studies resulted in overall scores of some concerns for risk of bias and high risk of bias. CONCLUSION: This review and meta-analysis showed that plyometric training improved jump height, 20-m sprint speed, and endurance, but not strength, sprint speed over other distances, or agility in male adult soccer players. However, the low quality of the included studies and substantial heterogeneity means that results need to be interpreted with caution. Future high-quality research should indicate whether or not plyometric training can be used to improve soccer-specific outcomes and thereby enhance performance

    Changes in Heart Rate and Its Regulation by the Autonomic Nervous System Do Not Differ Between Forced and Voluntary Exercise in Mice

    Get PDF
    Most exercise studies in mice have relied on forced training which can introduce psychological stress. Consequently, the utility of mouse models for understanding exercise-mediated effects in humans, particularly autonomic nervous system (ANS) remodeling, have been challenged. We compared the effects of voluntary free-wheel running vs. non-voluntary swimming on heart function in mice with a focus on the regulation of heart rate (HR) by the ANS. Under conditions where the total excess O2 consumption associated with exercise was comparable, the two exercise models led to similar improvements in ventricular function as well as comparable reductions in HR and its control by parasympathetic nervous activity (PNA) and sympathetic nervous activity (SNA), compared to sedentary mice. Both exercise models also increased HR variability (HRV) by similar amounts, independent of HR reductions. In all mice, HRV depended primarily on PNA, with SNA weakly affecting HRV at low frequencies. The differences in both HR and HRV between exercised vs. sedentary mice were eliminated by autonomic blockade, consistent with the similar intrinsic beating rates observed in atria isolated from exercised vs. sedentary mice. In conclusion, both forced and voluntary exercise induce comparable ventricular physiological remodeling as well as HR reductions and HR-independent enhancements of HRV which were both primarily dependent on increased PNA.New and noteworthy–No previous mouse studies have compared the effects of forced and voluntary exercise on the heart function and its modulation by the autonomic nervous system (ANS).–Both voluntary free-wheel running and forced swimming induced similar improvements in ventricular contractile function, reductions in heart rate (HR) and enhancements of HR variability (HRV).–HR regulation in exercised mice was linked to increased parasympathetic nerve activity and reduced sympathetic nerve activity.– HRV was independent of HR and depended primarily on PNA in both exercised and sedentary mice.– Complete cardiac autonomic blockade eliminated differences in both HR and HRV between exercised and sedentary mice

    Adherence to an injury prevention program in male amateur football players is affected by players' age, experience and perceptions

    Get PDF
    Objectives Adherence to injury prevention programmes in football remains low, which is thought to drastically reduce the effects of injury prevention programmes. Reasons why (medical) staff and players implement injury prevention programmes, have been investigated, but player's characteristics and perceptions about these programmes might influence their adherence. Therefore, this study investigated the relationships between player's characteristics and adherence and between player's perceptions and adherence following an implemented injury prevention programme. Methods Data from 98 of 221 football players from the intervention group of a cluster randomised controlled trial concerning hamstring injury prevention were analysed. Results Adherence was better among older and more experienced football players, and players considered the programme more useful, less intense, more functional and less time-consuming. Previous hamstring injuries, educational level, the programme's difficulty and intention to continue the exercises were not significantly associated with adherence. Conclusion These player's characteristics and perceptions should be considered when implementing injury prevention programmes

    Conduction through the Inward Rectifier Potassium Channel, Kir2.1, Is Increased by Negatively Charged Extracellular Residues

    Get PDF
    Ion channel conductance can be influenced by electrostatic effects originating from fixed “surface” charges that are remote from the selectivity filter. To explore whether surface charges contribute to the conductance properties of Kir2.1 channels, unitary conductance was measured in cell-attached recordings of Chinese hamster ovary (CHO) cells transfected with Kir2.1 channels over a range of K+ activities (4.6–293.5 mM) using single-channel measurements as well as nonstationary fluctuation analysis for low K+ activities. K+ ion concentrations were shown to equilibrate across the cell membrane in our studies using the voltage-sensitive dye DiBAC4(5). The dependence of γ on the K+ activity (aK) was fit well by a modified Langmuir binding isotherm, with a nonzero intercept as aK approaches 0 mM, suggesting electrostatic surface charge effects. Following the addition of 100 mM N-methyl-d-glucamine (NMG+), a nonpermeant, nonblocking cation or following pretreatment with 50 mM trimethyloxonium (TMO), a carboxylic acid esterifying agent, the γ–aK relationship did not show nonzero intercepts, suggesting the presence of surface charges formed by glutamate or aspartate residues. Consistent with surface charges in Kir2.1 channels, the rates of current decay induced by Ba2+ block were slowed with the addition of NMG or TMO. Using a molecular model of Kir2.1 channels, three candidate negatively charged residues were identified near the extracellular mouth of the pore and mutated to cysteine (E125C, D152C, and E153C). E153C channels, but not E125C or D152C channels, showed hyperbolic γ–aK relationships going through the origin. Moreover, the addition of MTSES to restore the negative charges in E53C channels reestablished wild-type conductance properties. Our results demonstrate that E153 contributes to the conductance properties of Kir2.1 channels by acting as a surface charge
    corecore